Abstract
Chromium nitride (CrN) coatings with different steps of intermediate argon plasma treatments were deposited with primary (200) orientation by multi-arc ion plating technique. By virtue of scanning electron microscopy, X-ray diffraction and high-resolution transmission electron microscopy, the influence of intermediate argon plasma treatments on the coating microstructures, mechanical properties and corrosion properties as well as tribological behaviors in artificial seawater solutions were systematically investigated. It was assumed that the mechanical properties, adhesion strength, corrosion and tribological performances of coatings depended on argon plasma treatment steps. High-performance coatings could be obtained by proper plasma treatment steps. The superior anti-corrosion ability of coating with appropriate treatment steps may be ascribed to the increased charge transfer resistance due to alternative interface and CrN layer and the compact microstructure. On the other hand, the excellent tribological performances in seawater conditions may be attributed to the enhanced mechanical properties. Otherwise, further increase in treatment steps was assumed to distinctly increase defects and deteriorate the coating integrity thus weakening coating properties and behaviors. Copyright © 2016 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.