Abstract

Two-dimensional MXenes were discovered in 2011 and, because of their outstanding properties, have attracted significant attention as electrode materials for supercapacitors, rechargeable batteries, and hybrid energy storage devices. Numerous studies were dedicated to identifying feasible charge storage mechanisms in MXenes and investigating the effects of structural and superficial properties on the corresponding mechanisms. The results clarify that interlayer distance and surface termination groups in MXenes significantly determine the deliverable energy and power density in respective energy storage devices. Additionally, due to van der Waals interactions, adjacent MXene sheets tend to aggregate and restack during electrode preparation or charge and discharge cycling, reducing the MXene interlayer distance and deteriorating its energy storage ability. In this review, we first summarize the different charge storage mechanisms applicable to MXenes in different energy storage devices and describe the effect of interlayer spacing and surface termination groups. Then, different interlayer space engineering methods are reviewed in terms of materials and procedures, and their impact on the electrochemical behavior and restacking tendency of MXene is described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.