Abstract

A damping model is developed based on the mechanism of interfacial interaction in nanoscale particle reinforced composites. The model includes the elasticity of the materials and the effects of interfacial adhesion hysteresis. Specific results are given for the case of bio-based PA610 polyamide reinforced by nanocrystalline cellulose (CNC), based on a previous study that showed this composite possesses very high damping. The presence of hydrogen bonding at the interface between the particle and matrix and the large interfacial area due to the filler’s nano size are shown to be the main causes of the high damping enhancement. The influence of other parameters, such as interfacial distance and stiffness of the matrix materials are also discussed. The modeling work can be used as a guide in designing composites with good damping properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.