Abstract

The impact of states at the insulator/AlGaN interface on the capacitance-voltage (C-V) characteristics of a metal/insulator/AlGaN/GaN heterostructure (MISH) capacitor was examined using a numerical solver of a Poisson equation and taking into account the electron emission rate from the interface states. A parallel shift of the theoretical C-V curves, instead of the typical change in their slope, was found for a MISH device with a 25-nm-thick AlGaN layer when the SiNx/AlGaN interface state density Dit(E) was increased. We attribute this behavior to the position of the Fermi level at the SiNx/AlGaN interface below the AlGaN valence band maximum when the gate bias is near the threshold voltage and to the insensitivity of the deep interface traps to the gate voltage due to a low emission rate. A typical stretch out of the theoretical C-V curve was obtained only for a MISH structure with a very thin AlGaN layer at 300 °C. We analyzed the experimental C-V characteristics from a SiNx/Al2O3/AlGaN/GaN structure measured at room temperature and 300 °C, and extracted a part of Dit(E). The relatively low Dit (∼1011 eV−1 cm−2) in the upper bandgap indicates that the SiNx/Al2O3 bilayer is applicable as a gate insulator and as an AlGaN surface passivant in high-temperature, high-power AlGaN/GaN-based devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.