Abstract

Effects of interfacial dislocations on properties of thin-film ferroelectric materials, such as the self-polarization distribution, Curie temperature, dielectric constant and the switching behaviors, are investigated via the system dynamics based on the Landau–Devonshire functional. Dislocation generation in the film is found to reduce the overall self-polarization and the Curie temperature. The spatial variations are both very strong, particularly in the immediate neighborhood of the dislocation cores. In agreement with previous results based on a stationary model, a dead layer exists near the film/substrate interface, in which the average self-polarization is much reduced. Moreover, it is evident from our results that interface dislocations play an important role in suppressing the remnant polarization and the coercive field of the polarization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.