Abstract

Cadmium (Cd) contamination of orchard soils is a global problem that has been increasing. To decrease the Cd accumulation in fruits, intercropping the orchard crops with hyperaccumulator plants has been used for soil remediation. A pot and a field experiment were conducted to study the effects of intercropping the potential Cd-hyperaccumulator Solanum photeinocarpum and its post-grafting generations with loquat (Eriobotrya japonica) on the growth and Cd uptake of these two plant species. In the pot experiment, intercropping improved the biomass, Cd content, Cd extraction, and root-to-shoot Cd translocation in both species. Intercropping increased the DNA methylation levels, antioxidant enzyme activity, and soluble protein content of loquat seedlings. These results indicate that intercropping could improve the phytoremediation of S. photeinocarpum and its post-grafting generations and increase the Cd uptake in loquat seedlings. In the field experiment, intercropping increased the Cd contents in the old branches, while it decreased that in the young branches and fruits of loquat. These findings indicate that intercropping could increase the Cd uptake in old tissues but reduce the Cd uptake in young tissues and fruits of loquat. So, intercropping loquat with S. photeinocarpum and its post-grafting generations could be used in Cd-contaminated orchards.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call