Abstract

A pot experiment was conducted to reveal the effects of intercropping a low-cadmium (Cd) accumulating cultivar and a Cd hyperaccumulator on the safe utilization and phytoextraction of Cd-polluted soils. Two cultivars of Brassica chinensis L. (the low-Cd accumulating cultivar Huajun, and the common cultivar Hanlü), were intercropped with four cultivars of Tagetes patula L. (Dwarf Red, Dwarf Yellow, Tall Red, and Tall Yellow). We examined the biomass, photosynthetic characteristics, and Cd accumulation in the plants and available Cd content and dissolved organic carbon (DOC) content in the soils. The results show that under the intercropping treatments, the biomass of B. chinensis decreased significantly and those of T. patula increased significantly, compared with the monoculture treatments. When intercropped with T. patula, the net photosynthetic rate, stomatal conductance, and transpiration rate in the leaves of B. chinensis decreased significantly, compared with the monoculture treatments. When Huajun was intercropped with Dwarf Red, the shoot Cd content of Huajun significantly decreased by 14.5%, and that of Dwarf Red increased significantly by 36.5% compared with the monoculture. Under the other intercropping treatments, the shoot Cd content of B. chinensis increased significantly, or showed no significant change, and that of T. patula showed no significant change. Under the intercropping treatments, the total amount of Cd in the shoot of B. chinensis decreased significantly, and that of T. patula increased significantly, compared with the monoculture. There were no significant differences in the Cd extraction ratios between the intercropping treatments and the monoculture of T. patula. The shoot Cd content of B. chinensis was significantly correlated with soil available Cd content and DOC content (P<0.01 and P<0.05, respectively). In conclusion, the intercropping treatment of Huajun and Dwarf Red significantly reduced shoot Cd content in B. chinensis and increased that in T. patula, and it did not affect the Cd extraction ratio. This is suitable for the safe utilization and phytoextraction of Cd-polluted soils.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call