Abstract

Strong electron–electron interactions in dilute two-dimensional electron systems in silicon lead to Pauli spin susceptibility growing critically at low electron densities. This effect originates from renormalization of the effective mass rather than the g-factor. The relative mass enhancement is system and disorder independent, which suggests that it is determined by electron–electron interactions only.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.