Abstract

Using the random-phase approximation and self-consistent field calculations, we have investigated the effects of finite interaction range and compressibility on the order-disorder transition (ODT) and the lamellar structure of symmetric diblock copolymers. While the compressibility does not affect the ODT, both the values of chiN and bulk lamellar period at the ODT increase with increasing interaction range. On the other hand, both the free-energy density and bulk period of the lamellae increase with either increasing interaction range or decreasing compressibility. Even with a finite compressibility, the mean-field ODT is still a second-order phase transition. The scaling exponent of bulk lamellar period with chiN, however, decreases with increasing compressibility. Our mean-field analysis provides a well understood reference for the study of fluctuation effects in diblock copolymers with finite interaction range and compressibility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call