Abstract

Recently, recognition of negative environmental impacts associated with overuse of pesticides in the agricultural regions of Bangladesh has made it clear that unsustainable pest-control strategies must change. Integrated Pest Management (IPM) was developed for use as a tool in the production of healthy, sustainably grown food. A strategic approach to crop-pest control, IPM aims to minimize pest populations by combining environmentally friendly pest-control methods and economically viable farming practices. This study examined the impact of IPM on insect damage to crop-yield parameters in a rice agro-ecosystem. IPM methods tested were: 1) collection of egg masses; 2) sweeping (using a funnel shaped net to capture insects); 3) perching (installing a branch or pole which serves as a resting place for predatory birds); and 4) Economic Threshold Level (ETL) based insecticide application (The ETL is the point at which the value of the crop destroyed exceeds the cost of controlling the pest). We also examined the effects of prophylactic insecticide application and current management practices on rice yield. Rice-yield indicators included number of healthy tillers, number of hills, central leaf drying (Dead Heart), and grain-less panicles (White Head). For two consecutive years, the lowest percentages of Dead Heart (1.23 and 1.55) and White Head (2.06) were found in the IPM-treated plots. Further, the IPM-treated plots had higher yields (7.3-7.5 ton/ha) compared with the non-IPM treatments (6.28-7.02 ton/ha). The location of the plots appeared to be non-significant for all measured yield components. The effect of treatment on the percentage of Dead Heart, White Head, number of hills, and yield was statistically significant (p ≤ 0.05). We concluded that IPM is an effective strategy for obtaining high rice yields in sustainable rice agro-ecosystems.

Highlights

  • Integrated Pest Management (IPM) is an effective, environmentally sound approach to pest management (Kabir and Rainis, 2015)

  • According to DAE (2011) YSB populations can be reduced through several IPM methods, including: light trapping, hand picking eggs from rice leaves (Leaves with egg masses are removed from plants by hand during tillering and booting stages), sweeping, perching, cultivation of insect resistant rice varieties, using bio-agents [releasing predator insects such as Long horned grasshopper Conocephalus longipennis (Haan)], applying Economic Threshold Level (ETL) based insecticides (The ETL is the point at which the value of the crop destroyed exceeds the cost of controlling the pest)

  • Our study examined common IPM strategies employed in rice agro-ecosystems including egg-mass collection, perching, sweeping, and ETL-based insecticide application

Read more

Summary

Introduction

Integrated Pest Management (IPM) is an effective, environmentally sound approach to pest management (Kabir and Rainis, 2015). It provides for the protection of beneficial insects, as well as prevention of secondary pest outbreaks, pest resurgence, and the spread of disease. IPM strategies aim to protect air, water, and soil resources while meeting specific production objectives (Mangan and Mangan, 1998; National Pesticides Information Center in USA, 20151 ). Key components of effective IPM strategies are monitoring of pest populations, recognizing pest-resistant plant varieties, and modifying cultural, mechanical, chemical, and biological controls as needed to achieve production goals (Adams, 1996). Including farmers’ traditional agricultural knowledge of insect behavior and life cycles is essential for developing a successful IPM plan (Petit et al, 2003; Roitberg, 2007; Vinatier et al, 2012), as is taking into account their current agricultural practices and experience in a given agro-ecosystem (Rahman, 2012; Craig, 2015)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call