Abstract

Insulin-like growth factor-1 (IGF-1) plays a crucial role in follicular growth and stimulates steroid hormone production in bovine follicles. Steroid hormones are synthesized through the actions of steroidogenic enzymes, specifically STAR, CYP11A1, HSD3B, and CYP19A1 in both theca cells (TCs) and granulosa cells (GCs), under the influence of gonadotropins. Particularly, estradiol 17β (E2) assumes a central role in follicular development and selection by activating estrogen receptors β (ESR2) in GCs. We assessed ESR2 mRNA expression in GCs of developing follicles and investigated the impact of IGF-1 on the mRNA expression of ESR2, CYP19A1, FSHR, and LHCGR, STAR, CYP11A1, and HSD17B in cultured GCs and TCs, respectively. Additionally, we assessed the influence of IGF-1 on androstenedione (A4), progesterone (P4), and testosterone (T) production in TCs. Small-sized follicles (< 6 mm) exhibited the highest levels of ESR2 mRNA expression, whereas medium-sized follicles (7-8 mm) displayed higher levels than large-sized follicles (≥ 9 mm) (P < 0.05). IGF-1 increased the mRNA expression of ESR2, CYP19A1, and FSHR in GCs of follicles of both sizes, except for FSHR mRNA in medium-sized follicles (P < 0.05). IGF-1 significantly elevated mRNA expression of LHCGR, STAR, CYP11A1, and CYP17B in TCs of small- and medium-sized follicles (P < 0.05). Moreover, IGF-1 augmented the production of A4 and P4 but had no impact on T production in TCs of small- and medium-sized follicles. Taken together, our findings indicate that IGF-1 upregulates steroidogenic enzymes and steroid hormone production, underscoring the crucial role of IGF-1 in follicle development and selection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.