Abstract
The molecular basis for impaired glucose metabolism in patients with Alzheimer's disease (AD) has not been fully clarified. We tested whether insulin and amyloid (A)β(1-42) oligomers would regulate glucose metabolism and energy homeostasis directly in cultured rat hippocampal neurons and evaluated possible interactions between insulin signaling and Aβ(1-42) oligomers. Dissociated hippocampal neurons were prepared from Wistar rat embryos at day 21 of gestation and cultured for 14days. Cultured neurons were exposed to insulin (1µM) for 30min, and Aβ(1-42) oligomers (1µM) were added to culture media for 10-30min. The glucose uptake of cultured neurons was measured by enzymatic fluorescence assay using 2-deoxy-d-glucose (2DG), and adenosine triphosphate (ATP) contents were quantified using a luciferin/luciferase luminescence assay. Aβ(1-42) oligomers did not suppress 2DG uptake, reflecting the activities of glucose transporters and/or hexokinase, but led to disrupted ATP contents in the presence and absence of monocarboxylates (lactate/pyruvate). Insulin and C-peptide did not change glucose uptake or ATP concentrations. The primary target of Aβ(1-42) oligomers might be mitochondria, which could explain the reduced cerebral glucose levels in patients with AD. Moreover, insulin signaling was not directly linked to glucose metabolism or energy homeostasis in cultured rat hippocampal neurons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.