Abstract

The main issue of the organic rectifier, the key element in radio frequency identification tags, is to improve forward-bias current density of an organic diode in the rectifier, which increases the frequency response of the rectifier. One approach to achieve high current density is inserting a hole injection layer (HIL) between the anode and the active layer to enhance the charge injection efficiency. Here we study the effect of HILs in pentacene rectifying diodes. Three different hole injection layers are applied to the pentacene diode: molybdenum trioxide (MoO3), 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile (HAT-CN), and poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS). A rectifier consists of the diode with a capacitor. The results show that current density of diodes with HILs is increased by more than three orders of magnitude compared with the diode without a HIL. The diode with MoO3 and that with HAT-CN shows similar forward bias current density, while that of the diode with PEDOT:PSS is slightly lower than those. Finally, the output voltage of the rectifier with a HIL is 4.6 V at 100 MHz when input voltage of 10 V is applied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call