Abstract

Fenitrothion, endosulfan and abamectin are insecticides that affect various organs in humans and animals. The present study was conducted to investigate their cytotoxicity in isolated male rat hepatocytes. The study suggests that incubation of hepatocytes with 10 or 100μM of each insecticide for 2h significantly decreased the cell viability. Increased leakage percentage of lactate dehydrogenase (LDH), alanine transaminase (ALT) and aspartate aminotranferase (AST) were detected in hepatocytes due to the same dose of insecticide exposure confirmed membrane damage of hepatocytes. Fenitrothion (100 μM) increased the cellular lipid peroxidation (LPO) levels more than the other insecticides. The activities of the antioxidant enzymes like superoxide dismutase (SOD), glutathione peroxidise (GSH-Px) and glutathione-S-transferase (GST) were decreased by fenitrothion incubation more than endosulfan and abamectin. The same treatment reduced the level of antioxidant glutathione (GSH) and increased the level of LPO. The activities of glutathione-S-transferase (GST) and gamma glutamyl transpeptidase (γ-GT) were more affected by fenitrothion and endosulfan, respectively, indicating an oxidative stress. There was negative correlation coefficient among GSH, GST and γ-GT. A significant correlation was also found between γ-GT and cell viability. The present study revealed that fenitrothion showed varying pathological signs depending on the dose; high dose caused marked damage of isolated hepatocytes in the oxidative and antioxidant parameters. Endosulfan induced cell membrane damage of the hepatocytes more than abamectin and fenitrothion as indicated by increasing the leakage percentages of LDH, ALT, AST and γ-GT. Therefore, hepatotoxicity of insecticides increased in a time and dose-dependent manner and depended on the class of the insecticide.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call