Abstract

During prolonged resistance training, protein supplementation is known to promote morphological changes; however, no previous training studies have tested the effect of insect protein isolate in a human trial. The aim of this study was to investigate the potential effect of insect protein as a dietary supplement to increase muscle hypertrophy and strength gains during prolonged resistance training in young men. Eighteen healthy young men performed resistance training four day/week for eight weeks. Subjects were block randomized into two groups consuming either an insect protein isolate or isocaloric carbohydrate supplementation within 1 h after training and pre-sleep on training days. Strength and body composition were measured before and after intervention to detect adaptions to the resistance training. Three-day weighed dietary records were completed before and during intervention. Fat- and bone- free mass (FBFM) improved significantly in both groups (Mean (95% confidence interval (CI))), control group (Con): (2.5 kg (1.5, 3.5) p < 0.01), protein group (Pro): (2.7 kg (1.6, 3.8) p < 0.01) from pre- to post- leg and bench press one repetition maximum (1 RM) improved by Con: (42.0 kg (32.0, 52.0) p < 0.01) and (13.8 kg (10.3, 17.2) p < 0.01), Pro: (36.6 kg (27.3, 45.8) p < 0.01) and (8.1 kg (4.5, 11.8) p < 0.01), respectively. No significant differences in body composition and muscle strength improvements were found between groups. In young healthy men, insect protein supplementation did not improve adaptations to eight weeks of resistance training in comparison to carbohydrate supplementation. A high habitual protein intake in both Con and Pro may partly explain our observation of no superior effect of insect protein supplementation.

Highlights

  • The United Nation’s (UN’s) Food and Agriculture Organization (FAO) estimates that global food production must increase by >70% by 2050 to feed the growing world population, expected to reach 9–10 billion people [1]

  • The current study shows that protein supplementation from insects after exercise and pre-sleep on training days does not promote greater gains in Fat- and bone- free mass (FBFM) and muscle strength after eight weeks of resistance training in young males compared to a non-protein supplemented group consuming on average 1.7 g/kg/day

  • With a growing world population and increased need for dietary protein, insect protein should be considered a valuable alternative to other dietary animal protein sources given its environmental profile [53]

Read more

Summary

Introduction

The United Nation’s (UN’s) Food and Agriculture Organization (FAO) estimates that global food production must increase by >70% by 2050 to feed the growing world population, expected to reach 9–10 billion people [1]. This highlights the importance of generating new and sustainable systems for production of animal-based food that provide an excellent source of protein for human nutrition. Protein from insects has great potential for being a climate-friendly, high-quality solution to meet future protein demands. We find it highly relevant to investigate this field regarding the potential beneficial effects of insect protein as human nutrition in a training context.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.