Abstract

This paper deals with the dynamic analysis of pre-stressed laminated composite plates. Particular emphasis is devoted to the case of in-plane mono-axial, biaxial, shear and combined loadings. Both equivalent single layer and layer-wise plate kinematic description are addressed, according to the hierarchical approach proposed by the Carrera's unified formulation. The different kinematic approaches are compared in order to identify the appropriate modeling for laminated composite plates subjected to combined loadings. The principle of virtual displacement is applied in order to obtain governing equations and the corresponding problem is solved through the finite element method. When possible, assessments/comparisons with exact solutions are proposed. Moreover, the effects of different stacking sequences, boundary conditions, geometries and materials on plate natural frequencies are illustrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.