Abstract

Selection of appropriate electron donors is important for charge transfer and photocatalytic hydrogen (H2) production from water. The influence of different inorganic electron donors (i.e., I−, S2−/SO32−, S2−, SO32−, Fe2+, and Ce3+) on H2 production was investigated on the (CuAg)0.15In0.3Zn1.4S2 photocatalyst under visible light. The highest photocatalytic H2 production rates were 1750, 1317, 820, 360, 260, 10 μmol g−1 h−1 with electron donors of 0.2M KI, 0.25M Na2S in combination with 0.35M Na2SO3, 0.25M Na2S, 0.35M Na2SO3, 0.2M FeCl2, and 0.2M Ce2(SO4)3, respectively. I− was determined as the most effective electron donor for (CuAg)0.15In0.3Zn1.4S2 photocatalyst, probably because (1) the redox potential of I3−/I− is relatively more suitable than those of other redox pairs for the charge transfer to valence band and (2) the positive surface charge of the (CuAg)0.15In0.3Zn1.4S2 photocatalyst at the solution pH of 2 facilitates the absorption of I− and subsequent reaction with the valence band holes. The effect of the initial I− concentrations on the H2 production and the potential reaction routes of I− on the photocatalyst were both analyzed to shed light on the reaction mechanisms. This study compared the efficacy of different inorganic electron donors in improving photocatalytic H2 production and provided fundamental insight into the search of appropriate electron donors and the efficient photocatalytic system design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.