Abstract

Drought presents a critical challenge to global crop production, exacerbated by the effects of global warming. This study explores the role of rhizospheric bacteria (Bacillus, Pantoea, and Pseudomonas) in enhancing the drought resistance and nutrient absorption of strawberry plants. The experimental approach involved inoculating plant roots with various strains of rhizobacteria and assessing their impact under different water potential conditions in two substrates: optimal moisture and water deficit. The results showed significant changes in the nutrient content of strawberry plants, influenced by the type of bacterial strain and moisture conditions. Phosphorus and potassium content in the leaves varied considerably, with the highest levels observed in plants inoculated with specific bacterial strains under both optimal and water-deficit conditions. Similarly, calcium and magnesium content in the leaves also changed notably, depending on the bacterial strain and moisture level. The water deficit cluster, featuring the PJ1.1, DKB63, and DKB65 strains, showed PGPR’s role in maintaining nutrient availability and plant resilience. The study demonstrates that inoculation with PGPR can markedly influence the nutrient profile of strawberry plants. These findings underscore the potential of using rhizobacteria to enhance crop resilience and nutritional status, especially in the context of increasing drought conditions due to climate change.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call