Abstract

Research indicates that there is considerable potential for a successful switch from high chemical use to lower-input, more sustainable farming practices for maize. The overall objective of the MicroMaize project was to field-test the performance of innovative microbiological management strategies. The effect of microbial consortia on maize growth and grain yield was studied in 2008 and 2009 at Martonvásár (Hungary) in a 50-year-old long-term fertilisation experiment. The experiment was set up in a split-plot design with four replications. The main plots were the fertilisation treatments: A: control, without fertilisation (N 0 P 0 K 0 ), B: N 50 P 24 K 43 , C: N 100 P 48 K 87 , D: N 200 P 96 K 174 , E: N 300 P 144 K 261 . Three microbial inoculation treatments were the sub-plots: C0: control, no microbial consortia, C1: A. lipoferum CRT1 + P. fluorescens Pf153 + G. intraradices JJ 129 , C2: A. lipoferum CRT1 + P. fluorescens F113 + G. intraradices JJ129 . The results indicated that the microbial consortia had no significant effect on maize growth and yield. In the ecophysiological analyses, the microbial consortia were found to have a significant positive effect on the chlorophyll content and on the protein and nitrogen contents of the grain yield in 2009. The long-term results revealed that the mineral fertilisation treatments and the year had a significant influence on the growth, yield and grain quality parameters of maize. The effect of nutrient supplies and year during the vegetative growth phase of maize could be quantified using the mean values of the absolute growth rate (AGR) for maize shoots and roots and with the nutrient stress index calculated from AGR. Further field investigations on productivity and eco-physiological parameters will be needed to estimate the effect of microbial consortia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.