Abstract

The acetone–butanol–ethanol (ABE) is the intermediate product during the bio-butanol fermentation process, and is widely considered as one of the promising alternative fuels in the diesel engine for its advantages of oxygenated fuels, better air–fuel mixing, lower NOx and soot emissions, and lower production cost. In this paper, different ABE ratios in the diesel fuel and injection timings were tested in the AVL diesel engine, and obtained the combustion and emission characteristics parameters for the late model calibration. Then, the CFD KIVA-3V code coupled with the CANTERA code was built and validated against the experimental data. Subsequently, different injection timings and exhaust gas recirculation (EGR) ratios were investigated on the diesel engine fuelled with the ABE/diesel blended fuel to unveil their effects on the combustion and emissions behaviors. The results indicated that the injection timing and EGR strongly affected the combustion process of the diesel engine fuelled with the ABE/diesel fuel. In addition, the oxidation and formation process of the intermediate species, soot precursors, final soot, NOx, CO and HC emissions in the diesel engine fuelled with the ABE/diesel fuel were also significantly impacted by the injection timing and EGR strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call