Abstract

Effects of injection rate and tumor physiology on the diffusion of magnetic nano-particles (MNPs) and temperature profile during magnetic hyperthermia are investigated in this work. The study considers three injection rates (2.5 μL/min, 10 μL/min, and 40 μL/min), and two MNP diffusion coefficients (10-9 m2/s and 10-11 m2/s). The simulation of this physics has been done on 3D tumor surrounded by healthy tissue. Transient MNP distribution in tissue is evaluated using Darcy's flow model and the MNP transport (convection-diffusion) equation. The temperature profile in the tumor model is computed by solving Penne's bioheat transfer equation (PBHTE). Results show tumors with high collagen content (with low MNP diffusivity) are more restrictive towards MNP transport than tumors having low collagen content. Thus, tumors with low MNP diffusivity need a higher injection rate to increase the homogeneity of MNP concentration as well as temperature profile during thermo-therapy. Results also show that, MNP fluid injected with a higher injection rate produces a more uniform MNP concentration up to greater depth than the lower injection rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call