Abstract

Vapor injection heat pumps have been proposed for cabin heating in electric vehicles (EVs) to improve the performance and reliability under severe weather conditions. However, the geometric optimizations of the injection-port and internal heat exchanger (IHX) in vapor injection heat pumps designed for EVs have rarely been investigated. The objective of this study is to investigate the effects of the injection-port angle and IHX length in a vapor injection heat pump for use in EVs at various startup conditions. The heating performance of a vapor injection heat pump with R134a is measured by varying the IHX length from 100 to 400 mm and injection-port angle from 320° to 440° at various cabin temperatures. The effects of the IHX length and injection-port angle are analyzed in terms of coefficient of performance (COP) and heating capacity. The optimum IHX length and injection-port angle for the maximum COP are determined to be 300 mm and 400°, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.