Abstract

The effects of initial temperature and cooling rate on the freezing behaviors of clusters Co531, Cu531, and Ni531 are studied by the molecular dynamics with a general embedded atom method. The results show that their freezing points are obviously influenced by initial temperature and cooling rate. Higher initial temperature or smaller cooling rate results in a higher freezing point. The variations of freezing structures for all clusters with the change of freezing condition are different. The icosahedron is formed for Cu531 and Ni531 in spite of their different freezing points. The HCP structure similar to the Co bulk is formed for Co531 under higher initial temperature and smaller cooling rate, the icosahedron is formed for other conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.