Abstract

We investigate the preparation of a target initial state for a two-level (qubit) system from a system-environment equilibrium or correlated state by an external field. The system-environment equilibrium or correlated state results from the inevitable interaction of the system with its environment. An efficient method in an extended auxiliary Liouville space is introduced to describe the dynamics of the non-Markovian open quantum system in the presence of a strong field and an initial system-environment correlation. By using the time evolutions of the population difference, the state trajectory in the Bloch sphere representation and the trace distance between two reduced system states of the open quantum system, the effect of initial system-environment correlations on the preparation of a system state is studied. We introduce an upper bound and a lower bound for the trace distance within our perturbation formalism to describe the diverse behaviors of the dynamics of the trace distance between various correlated states after the system state preparation. These bounds that are much more computable than similar bounds in the literature give a sufficient condition and a necessary condition for the increase of the trace distance and are related to the witnesses of non-Markovianity and initial system-bath correlation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.