Abstract

Hydrogen desorption/absorption of the LiBH4/MgH2 mixture milled for 5 h was investigated with different initial pressures. The results showed that the initial pressure played an important role in the reversibility of the LiBH4/MgH2 mixture. The stability of the hydrogen capacity in the subsequent desorption was improved with a higher initial pressure. A possible reason was from the increase in the formation of MgB2 and the lower degree in the decomposition of both LiBH4 to the amorphous phases of Li2B12H12 and B; and MgH2 to Mg, during the hydrogen desorption. However, the higher initial pressure increased the hydrogen desorption temperature. The desorption temperature was increased from 310 °C for the sample decomposing under 0.1 MPa hydrogen pressure to 360 °C for other cases. This may be due to the higher energy required to overcome the suppression of MgH2 and LiBH4 decomposition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.