Abstract
The effect of the initial imperfections on the nonlinear behaviors and ultimate strength of the thin-walled members subjected to the axial loads, obtained by the finite element stability analysis, are examined. As the initial imperfections, the bucking mode shapes of the members are adopted. The buckling mode shapes of the thin-walled members are obtained by the transfer matrix method. In the finite element stability analysis, isoparametric degenerated shell element is used, and the geometrical and material nonlinearity are considered based on the Green Lagrange strain definition and the Prandtl-Reuss stress-strain relation following the von Mises yield criterion. The U-, box- and I-section members subjected to the axial loads are adopted for numerical examples, and the effects of the initial imperfections on the nonlinear behaviors and ultimate strength of the members are examined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.