Abstract
The effect of initial concentration of linear alkylbenzene sulfonate (LAS: p-octylbenzene sulfonate (LAS C8), p-nonylbenzene sulfonate (LAS C9), p-dodecylbenzene sulfonate (LAS C12)) on the rate of sonochemical degradation was investigated over a wide concentration range under Ar atmosphere by 200 kHz ultrasonic irradiation. The degradation rate of each LAS increased with increasing initial concentration of LAS and then started to decrease with the different behavior depending on the types of LASs. This result indicated that the cavitation efficiency was gradually changed by their concentrations and the optimum LAS concentrations for their effective degradation existed. The maximum degradation rates were observed at 250 μM of LAS C12, 1250 μM of LAS C9, and 2500 μM of LAS C8, respectively. These optimum concentrations were found to be about four to six times smaller than these critical micelle concentrations (CMCs). It was also found that the maximum degradation rates at the optimum concentrations were observed to be almost linearly correlated with their CMCs. Based on the obtained results, it could be suggested that the micelle formation occurs in the interfacial region of cavitation bubbles during rectified diffusion and this phenomenon reduces the cavitation efficiency. In addition, from the results of the rate of the sonochemical degradation of LASs and the yield of hydrogen peroxide, the existence of thermal gradient in the interfacial region of cavitation bubbles was also confirmed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.