Abstract

The paper studies the linear vibrating mechanical behaviors of double-walled carbon nanotubes (DWCNTs) with the initial axial stress under the temperature field. The DWCNTs are modeled as double elastic shells coupled together through vdW interaction between inner and outer nanotubes. Based on the model, the relation between the amplitudes and the frequencies of the tubes is achieved. The results show that the initial axial stress could crucially affect the existence of the natural and intertube frequencies. Meanwhile, it is also concluded that the temperature change is significant for natural frequency, but weakly affects intertube frequency and amplitude ratios.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call