Abstract

Osteoblasts are the main functional cells in bone formation, which are responsible for the synthesis, secretion and mineralization of bone matrix. The PI3K/AKT signaling pathway is strongly associated with the differentiation and survival of osteoblasts. The 3-phosphoinositide-dependent protein kinase-1 (PDK-1) protein is considered the master upstream lipid kinase of the PI3K/AKT cascade. The present study aimed to investigate the role of PDK-1 in the process of mouse osteoblast differentiation in vitro. In the BX-912 group, BX-912, a specific inhibitor of PDK-1, was added to osteoblast induction medium (OBM) to treat bone marrow mesenchymal stem cells (BMSCs), whereas the control group was treated with OBM alone. Homozygote PDK1flox/flox mice were designed and generated, and were used to obtain BMSCsPDK1flox/flox. Subsequently, an adenovirus containing Cre recombinase enzyme (pHBAd-cre-EGFP) was used to disrupt the PDK-1 gene in BMSCsPDK1flox/flox; this served as the pHBAd-cre-EGFP group and the efficiency of the disruption was verified. Western blot analysis demonstrated that the protein expression levels of phosphorylated (p)-PDK1 and p-AKT were gradually increased during the osteoblast differentiation process. Notably, BX-912 treatment and disruption of the PDK-1 gene with pHBAd-cre-EGFP effectively reduced the number of alkaline phosphatase (ALP)-positive cells and the optical density value of ALP activity, as well as the formation of cell mineralization. The mRNA expression levels of PDK-1 in the pHBAd-cre-EGFP group were significantly downregulated compared with those in the empty vector virus group on days 3–7. The mRNA expression levels of the osteoblast-related genes RUNX2, osteocalcin and collagen I were significantly decreased in the BX-912 and pHBAd-cre-EGFP groups on days 7 and 21 compared with those in the control and empty vector virus groups. Overall, the results indicated that BX-912 and disruption of the PDK-1 gene in vitro significantly inhibited the differentiation and maturation of osteoblasts. These experimental results provided an experimental and theoretical basis for the role of PDK-1 in osteoblasts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.