Abstract
Salinity has a significant impact on the sewage treatment efficiency of constructed wetlands (CWs), as well as affecting the greenhouse gas emissions of CWs. A lab-scale CW simulation system was constructed to observe the treatment efficiency and greenhouse gas flux occurring in CWs at different influent salinities (0%, 0.5%, 1.0%, 1.5%, and 2.0%). The results show that (1) the removal rates of COD, TN, NH4+-N, NO3--N, and TP reach the highest at salinity of 0 or 0.5%. And the lowest removal rates are all at a salinity of 2.0%. (2) The emission flux of CO2, CH4, and N2O in CWs varies with an increase in salinity. The trends of CO2 and CH4 emission flux were consistent with those of COD reduction rate. However, it was opposite for N2O flux to that of TN, NH4+-N, and NO3--N removal rate. Affected by salinity, the greenhouse gas emission flux in this study is generally lower than what was reported in literature. (3) Correlation analysis showed that CO2 and CH4 emission fluxes were positively correlated with the COD reduction rate. N2O emission flux was negatively correlated with the removal rates of TN, NH4+-N, and NO3--N. The results suggest that different pollutants are inhibited by salinity to different degrees. COD is more affected by salinity than nitrogen and phosphorus, while nitrogen is more easily inhibited by salinity than phosphorus. CWs can have a high removal rate of pollutants in treating low-salinity wastewater. Although increased salinity reduces treatment efficiency of wastewater to some extent, it also inhibits the emission of CO2 and CH4.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.