Abstract

The host‐parasite interaction between juvenile carp, Cyprinus carpio, and the ectoparasitic branchiuran, Argulus japonicus, together with the role of cortisol in this interaction, was examined at the level of the host skin epidermis. Epidermal mucous cell numbers, and proliferation and apoptosis of the epithelial cells were studied over 32 days. Apoptotic cell numbers in the uppermost epidermis were reduced at 26 days post‐infection with A. japonicus, while the other parameters were unaffected. Administration of cortisol‐containing food resulted in reduced apoptosis in the cells in the upper skin epidermis at 24 h and at 28 days post‐feeding. Cortisol feeding combined with A. japonicus infection reduced numbers of apoptotic cells in the upper epidermis more than either individual treatment. Further, combining the treatments also significantly increased apoptosis in the lower epidermis in cells morphologically identified as leucocytes apparently migrating macrophages and lymphocytes. Using immunohistochemistry, we demonstrated cortisol receptor presence and cellular localization in the teleost epidermis. Receptors only occurred in pavement cells in the upper epidermis and in leucocytes in the lower parts of the epidermis. The ectoparasites, or administered cortisol, induced effects which may be functionally adaptive in the upper pavement cells, while combining the two treatments also induced changes indicative of immunosuppression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.