Abstract

Worcester, KS, Baker, PA, and Bollinger, LM. Effects of inertial load on sagittal plane kinematics of the lower extremity during flywheel-based squats. J Strength Cond Res 36(1): 63-69, 2022-Increasing load increases flexion of lower extremity joints during weighted squats; however, the effects of inertial load on lower extremity kinematics during flywheel-based resistance training (FRT) squats remain unclear. The purpose of this study was to evaluate sagittal plane kinematics of lower extremity joints during FRT squats at various inertial loads. Nine recreationally resistance-trained subjects (3M, 6F) completed a bout of FRT squats with inertial loads of 0.050, 0.075, and 0.100 kg·m2. Two-dimensional sagittal plane kinematics were monitored with retroreflective markers at a rate of 60 Hz. Joint angles and angular velocities of the knee, trunk + hip, trunk inclination, and ankle were quantified throughout concentric and eccentric actions. Effects of inertial load were determined by repeated-measures analysis of variance with α = 0.05. Average power and average vertical velocity decreased with increasing inertial load, whereas average force increased. Minimal and maximal sagittal plane joint angles of the knee, trunk + hip, trunk inclination, and ankle were not significantly different among inertial loads. However, peak joint angular velocities of the knee and trunk + hip tended to decrease with increasing inertial load. Conversely trunk inclination and ankle dorsiflexion velocities were not significantly different among inertial loads. Increasing inertial load from 0.050 to 0.100 kg·m2 significantly reduces average power during FRT squats primarily by decreasing movement velocity, which seems to be specific to the knee and hip joints. It is possible that lower concentric energy input at high inertial loads prevents increased joint flexion during FRT squats.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.