Abstract
We study by kinetic Monte Carlo simulations the catalytic oxidation of carbon monoxide on a surface in the presence of contaminants in the gas phase. The process is simulated by a Ziff-Gulari-Barshad (ZGB) model that has been modified to include the effect of the contaminants and to eliminate an unphysical oxygen poisoned phase at very low CO partial pressures. The impurities can adsorb and desorb on the surface but otherwise remain inert. We find that if the impurities cannot desorb, no matter how small their proportion in the gas mixture, the reactive window and discontinuous transition to a CO poisoned phase at high CO pressures that characterize the original ZGB model disappear. The coverages become continuous, and once the surface has reached a steady state there is no production of CO(2). This is quite different from the behavior of systems in which the surface presents a fixed percentage of impurities. When the contaminants are allowed to desorb, the reactive phase appears again for CO pressures below a value that depends on the proportion of contaminants in the gas and on their desorption rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.