Abstract

Propylene is used for manufacturing commonly used raw materials and synthetic materials for petrochemical processes. However, it is a volatile and flammable material that poses fire and explosion risks. Nitrogen is inexpensive and can lower the propylene explosion limit because of the dilution effect when used as an inert gas. This study measures the explosion limit, minimum oxygen concentration (MOC), explosion pressure, explosion pressure rise rate, and deflagration index (Kg) values for propylene and nitrogen at 25 °C. Results showed that the lower explosion limit of the explosion range did not significantly change with an increase in pressure from 0.10 MPa to 0.25 MPa; however, the upper explosion limit increased significantly. Furthermore, the MOC decreased as pressure increased at 25 °C, while both the maximum explosion pressure and maximum explosion pressure rise rate increased, thereby increasing the explosion risk. The risk of propylene was predicted by the Kg values determined using the maximum explosion pressure rise rate and volume based on the experimental data. Therefore, through this study, we provide basic data on safety references for preventing fire and explosion accidents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.