Abstract

Northwest China is located along China’s Belt and Road Initiative routes and represents the frontier and core region for China’s construction and development of the Silk Road Economic Belt. In recent years, the conflict between economic development and environmental pollution has become increasingly intense in this region, with the latter mainly caused by disorderly industrialization brought about by rapid urbanization processes. Inappropriate industrial structure is the primary reason for environmental degradation in Northwest China, which has limited precipitation and available water. Due to its fragile aquatic environment and unsustainable use of water resources, the pollution and degradation of the aquatic environment has become a bottleneck that severely restricts the sustainable development of China’s northwest region. In the present study, five provinces or autonomous regions in Northwest China were selected as the study objects. Based on the vector autoregressive (VAR) model, quantitative research methods, such as impulse response function and variance decomposition analysis, were applied to quantify the dynamics between industrial structure adjustment and changes in industrial pollutant discharges to the aquatic environment, so that the impact of industrial structure adjustment on pollutants discharged to the aquatic environment could be quantified and characterized. Therefore, the present study has both theoretical and practical significance. The conclusions are as follows: (1) In general, industrial structure in most provinces in Northwest China imposes a positive effect over the discharge of pollutants to the aquatic environment. Adjusting industrial structure and reducing the proportion of secondary industry present can to some extent promote reductions in the discharge of pollutants to the aquatic environment. However, such beneficial effects may vary among different provinces. (2) Specifically, for Gansu, province industrial structure adjustment could help reduce the discharge of pollutants to the aquatic environment effectively during the early stages, but this positive effect gradually weakens and disappears during the later stages. In Qinghai province, industrial structure adjustment could not help reduce the discharge of pollutants to the aquatic environment effectively during the early stages, but a positive effect gradually increases and continues to function later. The performance in Shaanxi and Xinjiang provinces was quite similar, with industrial structure adjustment helping to effectively reduce the discharge of pollutants to the aquatic environment over a long period of time. This positive effect can play a more sustained and stable role. For Ningxia province, industrial structure adjustment can not only help significantly reduce the discharge of pollutants to the aquatic environment but also displays a significant positive effect. (3) Given the specific conditions and characteristics of the region under study, relevant policies for industrial structure adjustment should be formulated and implemented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call