Abstract

The gut microbiota constitutes a complex ecosystem that has an important impact on host health. In this study, genetically engineered zebrafish with inducible nitric oxide synthase (iNOS or NOS2) knockout were used as a model to investigate the effects of nos2a/nos2b gene single knockout and nos2 gene double knockout on intestinal microbiome composition and function. Extensive 16S rRNA sequencing revealed substantial changes in microbial diversity and specific taxonomic abundances, yet it did not affect the functional structure of the intestinal tissues. Notably, iNOS-deficient zebrafish demonstrated a decrease in Vibrio species and an increase in Aeromonas species, with more pronounced effects observed in double knockouts. Further transcriptomic analysis of the gut in double iNOS knockout zebrafish indicated significant alterations in immune-related and metabolic pathways, including the complement and PPAR signaling pathways. These findings underscore the crucial interplay between host genetics and gut microbiota, indicating that iNOS plays a key role in modulating the gut microbial ecology, host immune system, and metabolic responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.