Abstract

Indomethacin (0.1 mM) causes significantly altered phospholipid synthesis in Tetrahymena and is able to influence the inositol phospholipid signalling system (9). In the present study the effects of indomethacin on the course of cell division, cyclin expression, the cortical microtubular system and on cytoskeleton-dependent processes (motility, phagocytosis) were investigated. As expected from its interference with the synthesis of phospholipids, indomethacin affected Tetrahymena in a number of ways: the structure of the cortical microtubular system became irregular; in many cells the stomatogenesis (development of new oral apparatus) and the development of the fission furrow was not accompanied by elongation of the macronucleus, which is a typical phenomenon of the normal course of mitosis: apparently indomethacin uncouples these phenomena. After indomethacin treatment, the expression of both cyclin A and cyclin B(1) were reduced significantly. The cell growth rate, motility and phagocytotic activity were all considerably reduced. There are probably additional mechanisms responsible for the effect of indomethacin on the systems that control divisional morphogenesis, for microtubule-dependent processes and for the connection between nuclear and cortical alterations during the cell cycle. Effects on protein phosphorylation/dephosphorylation, on cyclin expression and on microtubular functions are probably involved. These possibilities are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.