Abstract

A method to correct for the effect of ion energy on charge measurements of individual ions trapped and weighed with charge detection mass spectrometry (CDMS) is demonstrated. Ions with different energies induce different signal patterns inside an electrostatic ion trap. The sum of the amplitudes of the fundamental and second harmonic frequencies in the Fourier transform of the induced signal, which has been used to obtain the ion charge, depends on both ion energy and charge. The amplitudes of the fundamental frequencies of ions increase over time as ions lose energy by collisions with background gas and solvent loss from larger ions. Model ion signals are simulated with the same time-domain amplitude at different energies and frequencies and the resulting fundamental frequency amplitudes are used to normalize real ion signals for energy and frequency effects. The fundamental frequency amplitude decreases dramatically below 20kHz and increases by ~ 17% from the highest energy to lowest energy that is stable with a given trap potential at all frequencies. Normalizing the fundamental frequency amplitude with the modeled amplitudes removes the systematic changes in the charge measurement of polyethylene glycol (PEG) and other ions and makes it possible to signal average the amplitude over long times, which reduces the charge uncertainty to 0.04% for a PEG ion for a 500-ms measurement. This method improves charge measurement accuracy and uncertainty, which are important for high-accuracy mass measurement with CDMS. Graphical abstract ᅟ.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call