Abstract

Ground level ultraviolet‐B (UV‐B; 290–320 nm) fluxes in Antarctica have been increasing due to stratospheric ozone depletion. Although mat‐forming cyanobacteria are major component of freshwater algal biomass in Antarctica, little is known about their response to increasing ultraviolet radiation (UVR). The present study evaluated the sensitivity to UVR of two strains of mat‐forming cyanobacteria with different cell size, Phormidium murrayi (6.0 x 3.2 μm) and Schizothrix calcicola (2.2 x 2.3 μm). Cyanobacterial photosynthesis was measured under different UV spectral quality and quantity achieved by polychromatic filters with different cutoff wavelengths and neutral density screens. The productivity and irradiance data were used to generate biological weighting functions (BWF) for the assessment of UV inhibition on photosynthesis. The kinetics of UV inhibition, as determined by PAM fluorometry, differed between the two species so that inhibition of P. murrayi and S. calcicola were modeled based on UV‐irradiance and cumulative exposure, respectively. After a one hour exposure, BWF's did not differ between the two isolates of cyanobacteria despite their differences in cell size. To evaluate the negative impact of increased UV‐B exposure due to ozone depletion on cyanobacteria, the BWF's were applied to two solar spectra obtained from McMurdo Station, one on a day when the ozone hole was prominent (O3 = 170 Dobson units; DU = 10‐3 cm O3), and the other on a day with high ozone concentration (O3 = 328 DU). The decrease in ozone level would reduce productivity by 3–8%. Seasonal variation of UVR has a bigger impact on cyanobacterial productivity than ozone depletion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.