Abstract
Hydrologic modeling is a popular tool for estimating the hydrological response of a watershed. However, modeling processes are becoming more complex due to land-use changes such as urbanization, industrialization, and the expansion of agricultural activities. The primary goal of the research was to use the HEC-HMS model to evaluate the impact of impervious soil layers and the increase in rainfall-runoff processes on hydrologic processes. For these purposes, the Watershed Modelling System (WMS) and Hydrologic Engineering Center’s-Hydrologic Modeling System (HEC-HMS) models were used in this study to simulate the rainfall-runoff process. To compute runoff rate, runoff volume, base flow, and flow routing methods SCS curve number, SCS unit hydrograph, recession, and loss routing methods were selected for the research, respectively. To reduce the processing time and computational complexity, a small section of the Pipestem Creek Watershed was selected to understand the methods and concepts associated with the hydrologic simulation model building. A DEM along with other required data such as land use land cover data, soil type data, and meteorological data was utilized to delineate the watershed in WMS. The output of WMS was utilized to run the HEC-HMS model for five different scenario analyses. All the relevant data were plugged in to the model to get the desired map. Subsequently, outlets at appropriate locations were selected for the sub-basin delineation for further analysis. Finally, the model was parametrized to get successful simulation results. Overall, peak discharges and runoff volumes were increased with increasing storm depths and impervious areas. Peak discharges were increased to 36% and 51% when rainfall depths were increased by 10% and 20% from the initial rainfall depth, respectively. Runoff volumes were also increased to 35% and 49% for the same scenarios, respectively. Peak discharges were increased to 12% and 78% with a 10% and 20%, respectively, increase in impervious areas. The runoff volumes were increased by 12% and 76% when impervious areas were increased by 10% and 20%, respectively. The simulation models responded well, and the peak discharges and runoff volumes increased with increasing storm depths and impervious areas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.