Abstract

This work attempted to synthesize chitosan (CH) nanofibre from crab shell and hydroxyapatite, HA, from limestone with the objective of studying the effects of increasing volume fraction of chitosan nanofibre on the mechanical properties of HA. Mechanical characterization of different fraction composite was carried out to study the effects of increasing volume fraction of chitosan nano fibre on the mechanical properties of HA. In addition, surface characterization of the composite was carried out using Fourier Transform Infrared Spectrometry, FT-IR. Results obtained indicated that the optimum mechanical properties were obtained at a volume fractions of 30: 70, CH: HA respectively; average compressive strength of 10.12 MPa; average tensile strength of 173.9 MPa; average hardness value of 420.80 HV; average fracture toughness of 14.72 MPa.m1/2; average elastic modulus of 0.1583 GPa and average bending strength of 157.96 MPa were obtained for this optimum volume fractions. Increasing volume fractions of chitosan nanofibre was therefore found to result in decrease in compressive strength, hardness and elastic modulus of HA while its tensile strength, bending strength and fracture toughness increased. The FTIR revealed that possible interaction between the NH2 group and the primary and secondary –OH group of CH with Ca2+ (metal coordination interaction) of HA might be responsible for the higher mechanical property of HA. In conclusion, it was found that increasing chitosan volume fraction in chitosan/HA composite results in increasing strength of hydroxyapatite, consequently enhancing its load bearing ability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call