Abstract
BackgroundAircraft cabins are special environments. Passengers sit in close proximity in a space with low pressure that they cannot leave. The cabin is ventilated with a mixture of outside and recirculated air. The volume of outside air impacts the carbon footprint of flying. Higher recirculation air rates could be considered to save energy and divert less kerosene from producing thrust. ObjectivesTo investigate whether higher recirculation air rates in aircraft cabins negatively affect passengers' health and well-being and if occupancy plays a role in this. MethodsIn a 2 (occupancy: full and half-occupied) X 4 (ventilation regime) factorial design with stratified randomization, participants were exposed in an aircraft segment in a low-pressure tube during a 4-h simulated flight. Ventilation regimes consisted of increasing proportions of recirculated air up to a maximum CO2 concentration of 4200 ppm. Participants rated comfort, health symptoms, and sleepiness multiple times. Heart rate (variability), as stress marker, was measured continuously. Results559 persons representative of flight passengers regarding age (M = 42.7, SD = 15.9) and sex (283 men) participated. ANCOVA results showed hardly any effect of both factors on self-reported health symptoms, strong main effects of occupancy on comfort measures, and interaction effects for sleepiness and physiological stress parameters: Participants in the half-occupied cabin hardly reacted to increased recirculation air rates and show overall more favorable responses. Participants in the fully occupied cabin reported higher sleepiness and had stress reactions when the recirculation air rate was high. DiscussionThis large-scale RCT shows the importance of occupancy, a previously neglected factor in indoor air research. The proximity of other people seems to increase stress and exacerbate reactions to air quality. Further studies on causal pathways are needed to determine if recirculation air rates can be increased to reduce the carbon footprint of flying without detrimental effects on passengers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.