Abstract
Effects of inclusion particles on the microstructure and mechanical properties of high strength austempered ductile iron (ADI) were investigated in this study. Inclusion particles, especially when their sizes are less than 5 μm, were mostly found in intercellular regions. Whether an inclusion particle can induce the formation of acicular ferrite depends on Mn segregation. In intercellular region, acicular ferrite was hard to form in the vicinity of inclusion particles due to (1) serious Mn segregation, and/or (2) the Mg-enriched inclusions here in halo-like. Consequently the surrounding austenite remained to be blocky type after austempering treatment. The fatigue life cycles of ADIs were affected by the particle counts and the microstructure. Increasing the count of fine inclusions along with the effect of Mn segregation deteriorated the fatigue life and elongation of high strength ADIs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.