Abstract
Exchange coupling (EC) in Fe/Fe${}_{3}$O${}_{4}$ junctions containing magnetic impurities and in-gap states at the interface is calculated using a formula obtained by a cleaved layer method. The model for EC is constructed by performing first-principles calculations of the electronic and magnetic states of Co, Mn, and Cr impurities on the Fe surface and those of in-gap states in a bulk $\ensuremath{\gamma}$-Fe${}_{2}$O${}_{3}$, which has the same lattice structure as Fe${}_{3}$O${}_{4}$ but contains Fe defects. We show that the effect of Co impurities on EC is opposite to that of Cr and Mn impurities and that in-gap states tend to cause parallel magnetization alignment of two ferromagnets. These results are attributed to the change in electronic states caused by the presence of impurities. Further, we compare calculated results with experimental ones obtained in Fe/Fe${}_{3}$O${}_{4}$ junctions and suggest that doping magnetic impurities at the interface could be a useful way to control the magnitude and sign of the EC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.