Abstract

We study effects of nonmagnetic impurities in a Spin Bose-Metal (SBM) phase discovered in a two-leg triangular strip spin-1/2 model with ring exchanges (D. N. Shenget al, arXiv:0902.4210). This phase is a quasi-1D descendant of a 2D spin liquid with spinon Fermi sea, and the present study aims at interpolating between the 1D and 2D cases. Different types of defects can be treated as local energy perturbations, which we find are always relevant. As a result, a nonmagnetic impurity generically cuts the system into two decoupled parts. We calculate bond energy and local spin susceptibility near the defect, both of which can be measured in experiments. The Spin Bose-Metal has dominant correlations at characteristic incommensurate wavevectors that are revealed near the defect. Thus, the bond energy shows a static texture oscillating as a function of distance from the defect and decaying as a slow power law. The local spin susceptibility also oscillates and actually {\it increases} as a function of distance from the defect, similar to the effect found in the 1D chain [S. Eggert and I. Affleck, Phys. Rev. Lett. {\bf 75}, 934 (1995)]. We calculate the corresponding power law exponents for the textures as a function of one Luttinger parameter of the SBM theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.