Abstract

BackgroundThe influences of potential bone-to-implant contact (BIC) area (pBICA), BIC area (BICA), and three dimensional (3D) BIC percentage (3D BIC%; defined as BICA divided by pBICA) in relation to the implant length on initial implant stability were studied. Correlations between these parameters were also evaluated.MethodsImplants with lengths of 8.5, 10, 11.5, and 13 mm were placed in artificial bone specimens to measure three indexes of the initial implant stability: insertion torque value (ITV), Periotest value (PTV), and implant stability quotient (ISQ). The implants and bone specimens were also scanned by microcomputed tomography, and the obtained images were imported into Mimics software to reconstruct the 3D models and calculate the parameters of 3D bone-to-implant contact including pBICA, BICA, and 3D BIC%. The Kruskal-Wallis test, Wilcoxon rank-sum test with Bonferroni adjustment, and Spearman correlations were applied for statistical and correlation analyses.ResultsThe implant length affected ITV more than PTV and ISQ, and significantly affected pBICA, BICA, and 3D BIC%. A longer implant increased pBICA and BICA but decreased 3D BIC%. The Spearman coefficients were high (>0.78) for the correlations between the three 3D BIC parameters and the three indexes of the initial implant stability.ConclusionspBICA, BICA, and 3D BIC% are useful when deciding on treatment plans related to various implant lengths, since these 3D BIC parameters are predictive of the initial implant stability.

Highlights

  • The influences of potential bone-to-implant contact (BIC) area, BIC area (BICA), and three dimensional (3D) BIC percentage (3D BIC%; defined as BICA divided by pBICA) in relation to the implant length on initial implant stability were studied

  • High-resolution microcomputed tomography images were used to calculate the following three types of 3D BIC parameter and evaluate how these parameters influence the initial implant stability: the potential bone-to-implant contact area [22], which is the total exterior surface area of the dental implant inside the artificial bone specimen; the actual area of contact between the bone and implant (BICA); and the 3D BIC percentage (3D BIC%), which was calculated as BICA divided by pBICA [8, 11, 20]

  • The Correlation coefficients (R2) values were higher for the correlations of 3D BIC parameters with insertion torque value (ITV) and implant stability quotient (ISQ) than for those between 3D BIC parameters and Periotest value (PTV)

Read more

Summary

Introduction

The influences of potential bone-to-implant contact (BIC) area (pBICA), BIC area (BICA), and three dimensional (3D) BIC percentage (3D BIC%; defined as BICA divided by pBICA) in relation to the implant length on initial implant stability were studied. Hsu et al BMC Oral Health (2017) 17:132 with trabecular bone, which has a highly porous structure This means that the actual increase in contact area between the implant and bone might be less than expected for a longer implant. If clinicians want to increase the initial implant stability by embedding the longer implant in bone for patients, the measurement of actual contact area between the implant and bone seems to be necessary, especially for the three-dimensional (3D) bone-to-implant contact (BIC) [8, 11]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call