Abstract

Double-Ronchi shearing interferometry is a promising technique for insitu wavefront aberration measurement of the projection lens in photolithography systems. In practice, the non-uniformity of illumination is an important issue affecting the interference field, which has not been systematically researched. In this work, the interference field errors caused by non-uniform illumination distributions are analyzed utilizing the theories of scalar diffraction. The theoretical analysis has been verified by simulation and fundamental experiments. Results show that the uniformity requirements for the abrupt annular, Gaussian, and uniform random illumination distribution (RD) are 0.9434, 0.8439, and 0.2751, respectively, with a shear ratio of 5% and a relative wavefront reconstruction error of 1%. The uniformity of the three distributions is reduced to 0.6513, 0.5864, and 0.1234, respectively, with the shear ratio shrunk to 3%. When the shear ratio is less than 1%, there is no specific requirement for illumination uniformity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.