Abstract
To examine a possible mechanism for the antinociceptive action of the N-methyl-D-aspartate receptor antagonist ifenprodil, we compared its effects with those of ketamine on tetrodotoxin-resistant Na+ channels in rat dorsal root ganglion neurons, which play an important role in the nociceptive pain pathway. Experiments were performed on dorsal root ganglion neurons from Sprague-Dawley rats, recordings of whole-cell membrane currents being made using patch-clamp technique. Both drugs blocked tetrodotoxin-resistant Na+ currents dose dependently, their half-maximal inhibitory concentrations being 145+/-12.1 micromol (ketamine) and 2.6+/-0.95 micromol (ifenprodil). Ifenprodil shifted the inactivation curve for tetrodotoxin-resistant Na+ channels in the hyperpolarizing direction and shifted the activation curve in the depolarizing direction. Use-dependent blockade of tetrodotoxin-resistant Na+ channels was more marked with ifenprodil than with ketamine. When paired with lidocaine, these drugs produced similar additive inhibitions of tetrodotoxin-resistant Na+ channel activity. The observed suppressive effects on tetrodotoxin-resistant Na+ channel activity may, at least in part, underlie the antinociceptive effects of these N-methyl-D-aspartate receptor antagonists.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.