Abstract
PurposeThe purpose of this paper is to describe a methodology for predicting the effects of glaze ice geometry on airfoil aerodynamic coefficients by using neural network (NN) prediction. Effects of icing on angle of attack stall are also discussed.Design/methodology/approachThe typical glaze ice geometry covers ice horn leading‐edge radius, ice height, and ice horn position on airfoil surface. By using artificial NN technique, several NNs are developed to study the correlations between ice geometry parameters and airfoil aerodynamic coefficients. Effects of ice geometry on airfoil hinge moment coefficient are also obtained to predict the angle of attack stall.FindingsNN prediction is feasible and effective to study the effects of ice geometry on airfoil performance. The ice horn location and height, which have a more evident and serious effect on airfoil performance than ice horn leading‐edge radius, are inversely proportional to the maximum lift coefficient. Ice accretions on the after‐location of the upper surface of the airfoil leading edges have the most critical effects on the airfoil performance degradation. The catastrophe of hinge moment and unstable hinge moment coefficient can be used to predict the stall effectively.Practical implicationsSince the simulation results of NNs are shown to have high coherence with the tunnel test data, it can be further used to predict coefficients at non‐experimental conditions.Originality/valueThe simulation method by using NNs here can lay the foundation of the further research about the airfoil performance in different ice cloud conditions through predicting the relations between the ice cloud conditions and ice geometry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.