Abstract

Analyzes the performances of closed-loop control systems when real hysteretic actuators (e.g., Terfenol-D-based devices) are of concern. Shown is a simple but effective strategy, based on the simple idea of pseudo-compensator, for transducer's hysteresis compensation. Such a strategy improves the control system's behavior, not only in terms of tracking error reduction but also in decreasing the control signal so as to avoid saturation and harmful stress to the actuator on the one hand and reducing hysteretic energy losses on the other. Experiments are performed on a magnetostrictive actuator used for a micropositioning task.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.